–{•Ά‚ΦƒXƒLƒbƒv

_ŒΛ‘εŠw@—ŠwŒ€‹†‰Θ@˜f―ŠwκUE˜f―Šw‰Θ@Home@Page

RESEARCH GROUP

Fluid Geophysics (Earth and Planetary Atmospheric Science)


  • Members:
    Prof. Yoshi-Yuki Hayashi(URL), Associate Prof. Takahiro Iwayama(URL), Associate Prof. Yoshiyuki O. Takahashi(URL), Assistant Prof. Hiroki Kashimura(URL)
    1 Doctor course student, 2 Master course students, and 4 Undergraduate students
  • Location:
    The Graduate School of Science and Technology Bldg 3, Room 506 (Hayashi), 502 (Iwayama), 503 (Takahashi), 506 (Kashimura and students)

Research Interests:

Atmosphere and ocean play important roles in determining the surface environments of the Earth and many of the other planets. The mean surface temperature of the present Earth, for example, is about 15 degree C, and is maintained by the green house effect of the atmosphere and the meridional heat transport due to circulations of the atmosphere and the oceans. Consequently, the surface environment is expected to change when the atmospheric composition and/or the circulations of the atmosphere and the oceans are varied. However, at present, mechanisms which rule the actual changes of the surface environment have not been fully clarified, and therefore an evaluation of possible change is still quite difficult. A surprising fact is that, although there were events like the globally ice covered age, the Earth's surface environment has been relatively stable for about 4.5 billion years to be a planet of nourishing life. It is one the issues to be considered that the stability of the environment has been kept for such a long duration. In our laboratory, collabolating with Center for Planetary Science, we are trying to understand principles that control meteorology and climate systems of the planetary atmospheres and the oceans through investigating the following three main themes:


1. Planetary meteorology and climatology - studies on evolution and diversity of planetary atmospheres and surface environments -
It is well known that characteristics of atmospheric motions of the Mars and Venus are quite different from those of the Earth. For example, in the Venusian atmosphere, high speed wind, so-called the super-rotation, which circulates around the planet in a direction parallel to the equator in 4 to 5 days, exists almost uniformly over the planet. In the Martian atmosphere, many sizes of dust storms, ranging from small to global scales, frequently occur. Furthermore, exoplanets have parameters which are very different from those of planets in our solar system, and surface environment and circulation structure of those exoplanets may be significantly different from those of planets in our solar system. In our laboratory, we are performing theoretical and numerical studies to understand mechanisms controlling the diversity of such atmospheric motions, and to predict possible atmospheric circulations on the extra-solar planets. We are also contributing to both planning and executing planetary probes, like as the AKATSUKI (Planet-C) satellite .

2. Geophysical fluid dynamics - studies on elementary processes of fluid dynamics controlling atmospheric and ocean phenomena -
There are some curious characteristics in the flows of the atmospheres and the oceans which we may feel uneasy to understand from our daily intuition. Those characteristics are actually caused by the effects of the rotation of planets and the density stratification due to gravity. There also are unexpected similarities between the circulations in the terrestrial oceans and in the Jovian and the Saturnian atmospheres. In order to understand these circulations in the various planetary atmospheres, it is necessary to investigate the features of flows, vortices, and waves appearing there, and interactions between them. In our laboratory, we are studying theoretically and numerically a variety of fluid motions influenced by rotation and stratification as a basis for understanding of the circulations in the planetary atmospheres.

3. Computation and information meteorology - development researches on numerical simulation models and numerical data analysis tools -
Numerical calculation is a very powerful method to study behaviors of geophysical fluids, and meteorology and climate of the planetary atmospheres. In our laboratory, by the collaboration with research groups over the country (GFD Dennou Club; http://www.gfd-dennou.org/), we are working on development of numerical models, and utility softwares that are useful to handle huge datasets produced by numerical models. By the use of these tools, we are performing a number of simulations and experiments on the super computers in collaboration with the Earth Simulator, NAOJ(National Astronomical Observatory of Japan), ISAS/JAXA (Institute of Space and Astronautical Science/Japan Aerospace Exploration Agency), and NIES (National Institute for Environmental Studies).

Current Projects:

  • Structure of atmospheric general circulation (Mars, the Earth, Venus, giant planets, and exoplanets)
  • Moist convection (Earth) vs. dry convection (Mars)
  • Organization of convection (Earth's equatorial region), Multi-component cloud convection (giant planets), Convection with major component condensation (Mars)
  • Universal laws for two dimensional turbulence
  • Wave-mean flow interaction and formation of atmospheric zonal structure
  • Numerical simulations of a three dimensional convection in a rotating spherical shell (planetary cores, giant planets)
  • Development of input/output library that is useful for the numerical models and data analysis
  • Development of a general circulation model for the terrestrial planetary atmospheres


UPDATE@1/4/2017

Department of Planetology, Graduate School of Science, Kobe University

ADDRESS
1-1, Rokkodai-cho, Nada-ku, Kobe, Hyogo, Japan, 657-8501

TEL: (+81)-78-803-6483
FAX :(+81)-78-803-5791